Thesis Defense Jorge A. Acosta Ph D Candidate

Things to do
Thesis Defense   Jorge A. Acosta   Ph D Candidate
More Less
Thesis Defense Jorge A. Acosta Ph D Candidate says
Given a Riemann surface X = (Σ, J ) we find an expression for the dominant term for the asymptotics of the holonomy of opers over that Riemann surface corresponding to rays in the Hitchin base of the form (0, 0, · · · , tωn). Moreover, we find an associated equivarient map from the universal cover (Σ˜ , J˜) to the symmetric space SLn(C)/SU(n) and show that limits of these maps tend to a sub-building in the asymptotic cone. That sub-building is explicitly constructed from the local data of ωn.
More Less

By: Rice University Department of Mathematics